GCE

Chemistry A

Unit F321: Atoms, Bonds and Groups
Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations available in Scoris.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ECF	Incorrect response
I	Error carried forward
NAQ	Ignore
NBOD	Not answered question
A	Ponefit of doubt not given
RE	Pmission mark
SF	Rounding error
N	

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be annotated with ticks to show where marks have been awarded in the body of the text:

Q2d Q6b

Question			Answer			Mark	Guidance
1	(a)	(i)				2	DO NOT ALLOW '+' or '-' without ' 1 ' DO NOT ALLOW 1 without charge ALLOW 1+ AND 1- IGNORE '-‘ (ie a dash) for relative charge of a neutron
			Particle	Relative charge	Number of particles present in a ${ }^{140} \mathrm{Ce}^{2+}$ ion.		
			Protons	+1	58		
			Neutrons	Nil (or 0)	82		
			Electrons	-1	56		
			$\begin{array}{lll} & \\ \text { One mark per column } & \checkmark & \checkmark\end{array}$				
	(b)	(i)	Hydrogen \checkmark			1	ALLOW H2 IGNORE 'H'
		(ii)	$\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ (Cerium) loses three electrons (to form $3+$ ion) \checkmark			2	ALLOW alternative phrases for 'loses' eg 'gives away', 'donates' IGNORE '3 electrons transferred' unless a correct direction is given eg ALLOW (Ce) transfers 3 electrons to ... OR (Ce) transfers 3 electrons forming Ce^{3+} IGNORE references to sulfate gaining electrons IGNORE references to reduction and oxidation
		(iii)	A hydrogen ion (of an acid) has been replaced by a metal ion \checkmark			1	For hydrogen ion: ALLOW ' H^{+}OR 'proton' but DO NOT ALLOW 'H' OR 'hydrogen' without 'ion' For metal ion: ALLOW 'cerium ion' OR ‘Ce ${ }^{3+,}$ OR ‘ $\mathrm{Ce}^{2+,}$ OR ‘Ce ion’ But DO NOT ALLOW 'Ce' without 'ion' OR 'cerium' without 'ion' IGNORE 'ammonium ion'

Question			Answer	Mark	Guidance
	(c)		Check the answer line. If answer = $1080 \mathrm{~cm}^{3}$ award 2 marks Amount of $\mathrm{Eu}=9.12 / 152.0=0.06(00) \mathrm{mol}$ Amount of $\mathrm{O}_{2}=0.0600 \times 3 / 4=0.045(0) \mathrm{mol}$ and Volume of $\mathrm{O}_{2}=0.0450 \times 24000=1080 \mathrm{~cm}^{3}$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' eg 0.200 is allowed as 0.2 . ALLOW incorrectly calculated amount of Eu x $3 / 4$ and x 24000 correctly calculated for $2^{\text {nd }}$ mark Eg 2605.7 would come from (9.12/63) x $3 / 4 \times 24000$ (note: a mass of Eu x 3/4 and x 24000 would not score M2)
1	(d)	(i)	The simplest whole number ratio of atoms (of each element) present in a compound \checkmark	1	ALLOW smallest OR lowest for simplest ALLOW molecule for compound
		(ii)	Check the answer line. If answer $=\mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Tm}_{2}$ award 2 marks $\begin{aligned} & \mathrm{O}=30.7 / 16.0 \mathrm{~S} \\ & \mathrm{OR} \\ & 15.4 / 32.1 \mathrm{Tm}=53.9 / 168.9 \\ & 1.9(2) \mathrm{mol} \\ & \mathrm{O}_{12} \mathrm{~S}_{3} \mathrm{Tm}_{2} \checkmark \end{aligned}$	2	ALLOW 0.479 OR 0.48 for mol of S ALLOW 0.32 for mol of Tm DO NOT ALLOW $\mathrm{Tm}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ as empirical formula IGNORE $\mathrm{Tm}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ if seen in working.
	(e)	(i)	$32 \checkmark$	1	
		(ii)	$9 \checkmark$	1	
			Total	13	

Question			Answer	Mark	Guidance
2	(a)		$2 \mathrm{Al}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{AlF}_{3} \checkmark$	1	ALLOW multiples IGNORE state symbols
	(b)	(i)	Repeating pattern \checkmark of oppositely charged ions	2	ALLOW 'regular' OR 'alternating' OR 'uniform (arrangement)' for 'repeating pattern' ALLOW positive and negative ions OR aluminium ions and fluoride ions ALLOW oppositely charged ions from a labelled diagram
		(ii)	Al with 8 (or no) outermost electrons AND $3 x$ fluoride (ions) with 'dot-and-cross' outermost octet \checkmark Correct charges \checkmark	2	For first mark: If 8 electrons are shown in the cation then the 'extra' electron in the anion must match the symbol chosen for the electrons in the cation IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one F is drawn. ALLOW one mark if incorrect symbol is the only error, unless ECF from 2(a) in which both marks are available DO NOT ALLOW any marks for BF_{3} ALLOW 3[F-] $3[\mathrm{~F}]^{-} \quad\left[\mathrm{F}^{-}\right]_{3}$ (brackets not required) DO NOT ALLOW $\left[\mathrm{F}_{3}\right]^{-}\left[\mathrm{F}_{3}\right]^{3-}[3 \mathrm{~F}]^{3-}\left[\mathrm{F}_{3}{ }_{3}^{-}\right.$
	(c)	(i)	A shared pair of electrons.	1	
	(c)	(ii)		1	

Questi	Answer	Mark	Guidance
(d)	Conductivity of Al mark M1: Aluminium conducts in solid and molten states \checkmark Reason for conductivity of Al mark M2: Aluminium has delocalised electrons \checkmark Conductivity and reason for molten AlF_{3} mark M3: Aluminium fluoride conducts when molten AND because it has mobile ions \checkmark Conductivity and reason for solid AlF_{3} mark M4: Aluminium fluoride does not conduct when solid AND Solid aluminium fluoride has ions which are fixed (in position) OR ions are held (in position) OR ions are not mobile AND In an (ionic) lattice OR (ionic) structure OR by (ionic) bonds \checkmark	5	ALLOW 'carries charge' for conducts IGNORE 'charge carriers' for 'electrons' or 'ions' for M2, M3 and M4. Quality of written communication: 'delocalis(z)ed' spelled correctly and used in context for the second marking point. DO NOT ALLOW M2 if incorrect bonding is seen for $\mathrm{A} l$ DO NOT ALLOW 'ions move' for solid Al. IGNORE 'ions move' for molten Al. IGNORE references to 'aqueous' AlF_{3} for M3 IGNORE 'delocalised ions' OR 'free ions' for mobile ions in M3 DO NOT ALLOW M3 if incorrect bonding is seen in AlF_{3} DO NOT ALLOW any mention of electrons moving for M3 DO NOT ALLOW suggestion that it is only positive or only negative ions moving for M3 For conductivity parts of M3 + M4 ALLOW 'AlF 3 only conducts when molten' ALLOW Solid AlF_{3} is a poor conductor for M4 ALLOW second and third statements to be unlinked in separate sentences for M4 IGNORE 'there are no delocalised electrons' for M4 DO NOT ALLOW M4 if incorrect bonding is seen in AlF_{3} Lattice OR structure OR ionic bonds can be seen anywhere in relation to AlF_{3}. ALLOW Solid BBr_{3} is a poor conductor for M5 ALLOW electrons are fixed in position OR used in bonds

Question			Answer	Mark	Guidance
			Conductivity and reason for BBr_{3} mark M5 Boron tribromide does not conduct in solid and molten states AND Boron tribromide has no mobile electrons OR no (mobile) ions OR no mobile charge carriers OR no mobile charged particles		IGNORE 'there are no delocalised electrons' OR 'there are no free electrons' for M5 DO NOT ALLOW M5 if incorrect bonding is seen in BBr_{3} eg 'ions are fixed in position' ALLOW 'no (free) ions'
2	(e)	(i)	$\mathrm{Al}^{2+}(\mathrm{g}) \rightarrow \mathrm{Al}^{3+}(\mathrm{g})+\mathrm{e}^{-} \checkmark$	1	State symbols required (ignore states on electrons) ALLOW $\mathrm{Al}^{2+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Al}^{3+}(\mathrm{g})$ ALLOW e for e^{-}
		(ii)	All (thirteen) ionisation energies show an increase The two largest increases are between the third and fourth AND the eleventh and twelfth ionisation energies	2	IGNORE line if drawn IGNORE 0 if included ALLOW one mark for three lines (no crosses) showing an increase between: first and third; fourth and eleventh; twelfth and thirteenth AND Largest increases between each line ALLOW crosses outside grid
			Total	15	

Question			Answer	Mark	Guidance
3	(a)		Cl (has been oxidised) from $\mathrm{Cl}=-1$ to $\mathrm{Cl}=0$ Mn (has been reduced) from $\mathrm{Mn}=+4$ to $\mathrm{Mn}=+2 \checkmark$	2	ALLOW 4+ OR 4 OR 2+ OR 2 ALLOW oxidation numbers written above the equation but IGNORE these if oxidation numbers are given in the text ALLOW one mark for Cl is oxidised because the oxidation number increased by 1 AND Mn is reduced because the oxidation number decreased by 2 ALLOW one mark if all oxidation numbers are correct but redox is incorrect. IGNORE HCl is oxidised AND MnO_{2} is reduced IGNORE correct references to electron loss/gain DO NOT ALLOW incorrect references to electron loss/gain
(b)			$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2} \checkmark$	1	ALLOW 4s ${ }^{2} 3 \mathrm{~d}^{5}$ IGNORE $1 \mathrm{~s}^{2}$ seen twice
	(c)		$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaClO}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols ALLOW OH^{-}and ClO^{-}, i.e. $\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW NaOCl
3	(d)	(i)	(The solution would turn) yellow OR orange OR brown \checkmark	1	ALLOW shades and colours (eg dark yellow, yellow-orange) DO NOT ALLOW 'purple'
	(d)	(ii)	$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{l}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})^{\checkmark}$	1	ALLOW multiples State symbols required ALLOW Cl ${ }_{2}(\mathrm{aq})$
	(e)	(i)	The ability of an atom to attract electrons \checkmark (Electron pair) in a (covalent) bond \checkmark	2	ALLOW 'Measure’ for ability ALLOW 'attraction' for 'ability to attract' ALLOW 'The ability of an atom to attract a shared pair of electrons' for two marks

Question			Answer	Mark	Guidance	
3	(e)	(ii)	 Correct orientation of 3-D tetrahedral arrangement of bonds around C atom \checkmark $\delta+$ on C atom AND δ - on both Cl atoms \checkmark	2	For a 3D structure,	
					For bond in the plane of paper, a solid line is expected:	
					For bond out of plane of paper, a solid wedge is expected:	V
					For bond into plane of paper, ALLOW:	
					ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.:	
					ALLOW any 3D representatior into the plane of paper AND paper ALLOW 2 lines in the plane IGNORE dipole charges on	ion with a minimum of one bond minimum of one out of plane of + 2 different bonds for M1
		(iii)	The dipoles do not cancel out OR Because the molecule is non-symmetrical	1	ALLOW partial charges do IGNORE charges do not ca ALLOW (the more) electron the molecule	not cancel ncel egative atoms are on one side of
	(f)		55%	1		
			Total	12		

Question			Answer	Mark	Guidance
4	(a)	(i)	Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.100 \times 18.00 / 1000=1.80 \times 10^{-3} \mathrm{~mol} \checkmark$	1	ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing zeroes' throughout Q4. eg 0.200 is allowed as 0.2
		(ii)	Mol of NaOH in $=1.80 \times 10^{-3} \times 2 \times 1000 / 25.0=0.144 \mathrm{~mol}$ dm^{-3}	1	ALLOW ECF for (a)(i) $\times 2 \times 1000 / 25$
	(b)	(i)	Check the answer line. If answer = 0.0184 mol award 2 marks Mol of NaHCO_{3} in $25.0 \mathrm{~cm}^{3}=[0.100 \times 11.50 / 1000] \times 2=$ 0.00230 mol Mol of NaHCO_{3} in $200 \mathrm{~cm}^{3}=0.00230 \times 200 / 25.0=0.0184$ mol	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW for an alternative method for M1 Total mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=[0.100 \times 29.50 / 1000]=0.00295$ mol Mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacting with $\mathrm{NaHCO}_{3}=0.00295$ - answer to (a)(i) Expected answer $=.00295-0.00180=0.00115 \mathrm{~mol}$ Mol of NaHCO_{3} in $25.0 \mathrm{~cm}^{3}=0.00115 \times 2=0.00230 \mathrm{~mol}$ ALLOW ECF for mol of $\mathrm{NaHCO}_{3} \times 200 / 25.0$ For ECF in M2 titration values of 11.50 or 29.50 must have been used in M1 Second marking point is for scaling up number of mol of NaHCO_{3} by 200/25.0 (Usually seen as ' 8 ')
		(ii)	Mass of $\mathrm{NaHCO}_{3}=0.0184 \times 84.0=1.55 \mathrm{~g} \checkmark$ (must be three significant figures)	1	ALLOW ECF for (b)(i) x 84.0 correctly calculated and rounded to three significant figures.
			Total	5	

Question		Answer	Mark	Guidance	
$\mathbf{5}$	(a)	(i)	2Ca $+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO} \checkmark$ (b)	(ii)	Thermal decomposition \checkmark (c) Base: A substance which readily accepts H^{+}ions (from an Alkali: releases OH^{-}ions into (aqueous) solution \checkmark

Question		Answer	Mark	Guidance
6	(a)	The attraction (between nuclei and outermost electrons) increases (across the period) AND The nuclear charge increases OR The number of protons increase \checkmark (Outer) electrons are in the same shell OR (Outer) electrons experience similar shielding OR Same number of shells OR Atomic radius decreases \checkmark	2	ALLOW There is no change in shielding But DO NOT ALLOW 'there is no shielding' DO NOT ALLOW electrons are at the same distance

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

